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The average droplet size and their distribution in polymer-dispersed liquid-crystal (PDLC)
materials, prepared under microgravity and terrestrial environments, are studied experi-
mentally as a function of cure time. The PDLC films are prepared using a polymerization-
induced phase-separation (PIPS) technique. A theoretical kinetic model, based on the birth-
death type of differential equation, is developed. (This amounts to ignoring the coalescence
produced by hydrodynamic motion.) Two important observations are reported in this study.
The first, we found that microgravity plays a decisive role in establishing a Gaussian
distribution of the liquid-crystal droplets which is in good agreement with theory. This
behavior is maintained even if the droplets are allowed to grow substantially under terrestrial
conditions provided the final stages of growth takes place under microgravity environment.
The growth under microgravity conditions is diffusion dominated with an estimated effective
spatial diffusion coefficient D ) 3.78 × 10-12 cm2 s-1, which seems appropriate for polymer
matrix systems with high viscosities. The second result shows that the average particle
size grows faster than the theoretically predicted t1/3 dependence. We believe that the
coalescence processes that take place during the growth of droplets at 1 g during the cure
time are responsible for this deviation.

Introduction

Polymer-dispersed liquid-crystal (PDLC) materials
have important industrial applications in information
displays, optical shutters, and switchable windows.1,2
A PDLC film is composed of micron-sized dispersion of
liquid-crystal (LC) droplets within a polymer matrix. A
simple way to prepare PDLC materials is to exploit the
phase-separation phenomena. This can be accom-
plished (a) by cooling a thermoplastic/LC mixture below
a critical solution temperature (thermal-induced phase
separation or TIPS process), (b) through solvent evapo-
ration of a solution-casted polymer/LC film (solvent-
induced phase separation or SIPS process), or (c) by
thermal or photopolymerization of the polymer precur-
sor of the monomer/LC solution (polymerization-induced
phase separation or PIPS process). The size and
distribution of these droplets are the most important
parameters that affect the electrooptical performance
of PDLCs.3,4 In the PIPS process, they are determined
principally by composition, by cure rate and extent, and
by mutual solubility of LC with the monomer. Usually,
under terrestrial conditions, the phase separation (i.e.,
scaling properties) and the growth processes are greatly
affected by sedimentation and convection.5 Convection
of droplets could be expected to affect coarsening

phenomena within films, in which the reduction of
surface area drives the coalescence of droplets or
domains. As shown recently,6 the proximity of a surface
can strongly influence the phase separation and also the
subsequent domain growth of the phase. In this inves-
tigation we are mainly interested in the PIPS process
and the surface tension driven growth is avoided by
analyzing the data in regions far away from the surface
and maintaining almost uniform temperature and con-
centration (Marangoni effects are not important). The
presence of an ordering field such as gravity can also
produce surface (capillary fluctuations) and network
instabilities (sol-gel transformation) which can play an
important role in the formation and growth processes.
In this study we introduce another film formation

parameter, namely, the microgravity environment. In
the case of PIPS process the phase transition is that of
sol-gel type which is strongly influenced by gravity. In
the SOL phase the polymer molecule clusters are
relatively free to move and form networks which contain
domains to be eventually filled with liquid crystal.
Under 1 g the domains coalesce to produce distorted
shapes which are then frozen on gelation. The driving
force behind coalescence is the reduction in interfacial
tension energy because of a small number of large
surface domains. Furthermore the networks are not
stable and may collapse under their own weight, pro-
ducing spatial inhomogeneities. The final distribution
is controlled by the competition between the polymer-
ization reaction rate and the rate of reduction of free
energy. However, in the case of microgravity environ-
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ment, diffusion is the major growth process producing
spherical and more uniform domains. The interfacial
tension is not affected by gravity. The final distribution
here is controlled by the competition between the
polymer reaction rate and the rate of reduction of the
difference between the chemical potential of the inside
and the outside regions of the domains. We present the
effect of microgravity environment, as a function of time,
on the spectrum of liquid-crystal droplets in a polymer
matrix. Theory based on Smolouchowski type of equa-
tions which describe the growth of droplets under
microgravity conditions is also developed. We find that
when gravity is neglected, diffusion is the controlling
process for growth and the droplet size distribution is
Gaussian. This is in agreement with the experimental
observation. The Gaussian distribution is obtained even
if the specimen exposed to microgravity conditions for
a short time in the final stages of the growth process.

Experimental Section

The liquid crystal was a eutactic mixture designated as E7
(BDH Merck) which consists of 51% n-pentylcyanobiphenyl,
25% n-heptylcyanobiphenyl, 16% n-octylcyanobiphenyl, and
8% n-pentylcyanoterphenyl. The polymer matrix was a UV-
curable resin NOA65 (Norland Products) which consists of
trimethylpropanediallyl ether, trimethylolpropane tristhiol,
isophorone diisocyanate ester, and benzophenone photoinitia-
tor.
The PDLC films were prepared by irradiation with a UV

lamp (λ ) 365 nm and power ) 100 mW/cm2) of predetermined
mixtures of NOA65 and E7. A thin film (∼5-20 µ) of the
mixture was spread between two glass substrates (transparent
conductive electrode such as ITO glass). The film thickness
was controlled by polycarbonate or polyimide film spacers.
Microgravity experiments were carried out at ZARM Drop

Tower in Bremen Germany.7 The PIPS apparatus consisted
of a large-surface, high-power monochromatic UV lamp (Elec-
tro-Lite Co., Model ELC4000, 15 × 15 cm, λ ) 365 nm
producing 100 mW/cm2) with an electrically activated mechan-
ical shutter and a stabilized ac power supply, controllers, and
probes for data acquisition during the drop experiment and a
cell support. The cell support, which was made up of a
thermoplastic insulator, could carry three sets of experiments.
Each set consisted of three identical PDLC cells in order to
ensure the reproducibility of our results. Variable lamp
intensities were obtained by varying the distance of the cell
support from the lamp. The drop capsule which hold the PIPS
apparatus was sealed airtight and lifted to the top of the drop
tower. The tower was evacuated and the capsule dropped for
a 110 m free fall of 4.75 s at approximately 10-6g. A series of
drops were carried out in order to determine the effect of
microgravity and the role of other material processing param-
eters. In the case of the NOA65/E7 system, composition ratios
of 40/60, 50/50, and 60/40 and fixed cure time of 4.75 s (drop
exeriments) and 3.3 s (after drop time) were used for each
experiment. However, the irradiation time before the drop was
varied from 2 to 6 s.
The morphology of the PDLC films was studied by scanning

electron microscopy (SEM) using standard procedure. The
cured samples was glued to an aluminum SEM stud and a
section of the sample was removed from the top using a razor
blade in order to achieve a flat surface (usually in the middle
of the sample) for examination. The stud was placed in a
sputtering unit evacuated to 10 mTorr of Hg for about an hour
(this process removed practically all the liquid crystal from
the exposed microdroplets). The sample was then coated with
a thin Au-Pd coating to provide the conductive surface
required for the SEM. The sample was then examined at

magnification up to 8000×, using an acceleration potential of
15 kV. The solubility limit of liquid crystal in polymer matrix
as well as fraction of liquid crystal which is dispersed as
microdroplets were determined by differential scanning calo-
rimetry (DSC).

Results and Discussion

The typical morphology of PDLC films for a 50/50
NOA65/E7 blend is shown in Figures 1 and 2. Figure
1 shows the SEM pictures of two PDLC films prepared
under similar conditions, except for gravity, irradiated
for 10 s as followed: (a) 2.00 s before drop at 1g, 4.75 s
at 10-6g, and 3.25 s at 1g after the drop, and (b) 10 s at
1g. Figure 2a shows the morphology of a PDLC film
irradiated for 12 s (4.00 s at 1g, followed by 4.75 s at
10-6g, and 3.25 s at 1g) and Figure 2b for an identical
PDLC film irradiated 12 s at 1g. From these pictures
we note that under microgravity the liquid-crystal
droplets (1) are nearly spherical in shape, (2) form less
interconnected domains, and (3) are more uniformly
dispersed.
Furthermore we note from these figures that the

droplets are not uniform in size. From the analysis of
the SEM pictures we can determine the size distribu-
tion. Figure 3 shows the droplet size distribution under
terrestrial conditions for a cure time of 10 s, indicating
a broad distribution. Figure 4 shows the size distribu-
tion under microgravity environment with the remain-
ing parameters same as in Figure 3. An important(7) Drop Tower-Bremen, User manual, version 2-1-2/91.

Figure 1. Scanning electron microscopy pictures for PIPS
cells (NOA57/E7 50:50) at T ) 25 °C: (a, top) drop tower
experiment (2 s at 1g, 4.75 s at 10-6g and 3.25 at 1g) and (b,
bottom) 10 s at 1g.

Liquid-Crystal Droplets Dispersed in a Polymer Matrix Chem. Mater., Vol. 8, No. 6, 1996 1211



distinction is observed between these two specimens.
Under the microgravity environment the distribution
is closer to a Gaussian distribution (a Gaussian fit is
also shown in Figure 4; see theory below) as compared
to the specimen prepared at 1g. The average diameter
in the two cases is approximately the same showing that

the average diameter is dependent only on the cure time
which is held constant here.
To investigate the variation of average size with time

and the changes produced in the distribution, the
specimens were prepared for several cure times. Since
the drop time is fixed, we varied the cure time before
the drop between 2 and 6 s. In our system, as the
polymerization starts the viscosity of the polymer matrix
increases till a sol-gel type of phase transition takes
place. Exact time of transition is difficult to determine
under microgravity environment, but, however, scat-
tering studies at 1g in our laboratory and morphological
investigation of UV-curable PDLC materials8 indicate
that the phase separation takes place between 2 and 5
s after the start of the polymerization process. Thus
by varying the cure time between 2 and 6 s before the
drop permits us to allow part of the growth to take place
under terrestrial conditions (where coalescence may be
predominant) and the remaining diffusive growth at
10-6g. This combined growth gives interesting results
showing the effect of microgravity during the later
stages of growth. The SEM pictures show that the size
distribution approaches a Gaussian in all the three
cases and the mean diameter increases nonlinearly with
time. Figure 5 shows the variation of mean droplet
diameter as a function of total cure time where the
dispersion in the data is shown by vertical lines which
represent the standard deviation 2σ evaluated respec-
tively from the Gaussian distributions at 10, 12, and
14 s. We find that in the case when the cure time is 14
s and the PDLC film spends a greater fraction of the
preparation time at 1g, the distribution is broader as
compared to the 10 s cure time case, even if the
distribution in both cases in Gaussian.
An interesting result is that even if the specimen is

exposed to microgravity environment in the later stages
of growth, the size distribution is Gaussian. In other

(8) Lovinger, S. J.; Amundson, K. R.; Davis, D. D. Chem. Mater.
1994, 6, 1726.

Figure 2. Scanning electron microscopy pictures for PIPS
cells (NOA57/E7 50:50) at T ) 25 °C: (a, top) drop tower
experiment (4 s at 1g, 4.75 s at 10-6g and 3.25 at 1g) and (b,
bottom) 12 s at 1g.

Figure 3. Droplet number (%) versus diameter at 1g for a
NOA57/E7 film (50:50 ratio) at T ) 25 °C and 12 s irradiation
time.

Figure 4. Droplet number (%) versus diameter at 10-6g for
a NOA57/E7 film (50:50 ratio) at T ) 25 °C and 12 s irradiation
time. The theoretical distribution is also shown where the best
fit corresponds to D ) 3.78 × 10-12 cm2 s-1.
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words, microgravity environment has a strong influence
on the growth processes. As we show later in the
following section that if the effects of a directed force
such as gravity are neglected, the droplet distribution
is expected to be Gaussian and the growth is diffusion
dominated. We will also compute the average droplet
size as a function of time. Experimentally we observed
a much faster growth than predicted by theory, and we
believe that this deviation is probably caused by coa-
lescence produced during the cure process under ter-
restrial conditions (before the drop).
In the last section it was experimentally shown that

the droplet size distribution in PDLC materials pre-
pared under microgravity environment is Gaussian with
a mean diameter which increases nonlinearly with cure
time. We prove here that when the cluster aggregation
or coalescence (produced either by convection or caused
by hydrodynamic flows driven by interfacial tension) are
neglected, the droplet distribution is Gaussian with a
time-dependent mean radius. Neglecting the aggrega-
tion between droplets, considering the droplet as a
cluster of molecules or particles, and assuming that the
clusters change their size as a result of addition or loss
of single particle, the rate of change of the population
of clusters consisting of i particles, ni is governed by eq
19,10 (the birth death process)

where âi and Ri are respectively the rate of condensation
and evaporation of an i-population cluster and Ii denotes
the net flux of clusters passing from i population to (i
+ 1) population and is given by

We have used the word particle in the sense that due
to coarsening11 (Ostwald ripening) processes the small-
est size taking part in growth is given by the critical
size. Furthermore the words cluster and droplet are
synonymous to each other in this text, and we will use
both without any confusion. Our model is more general
than Ostwald ripening because in the later case the
source for growth are small particles which must be
continuously produced via condensation process and
require supersaturation conditions. In our model the
concentration of molecules is arbitrary. For a detailed
description of Ostwald ripening we refer the reader to
our recent publication.11

A strategy for dealing with the problem is the solution
of the system of coupled difference equations with the
intention of finding the size distribution and the mean
droplet radius. It could only be undertaken numeri-
cally, of course, and as the aim is to understand the
effect of gravitational field on droplet distribution,
rather than to churn numerical results, we choose
instead to make simplifying assumptions in the hope
of obtaining analytical results. We first reduce the
system of discrete equations to a single partial dif-
ferential equation (Fokker-Planck equation). It is easy
to show (see Appendix) that the system of equations 1
can be written as

where the discrete variable i is replaced by the continu-
ous variable x, and

The net flux of clusters is now given by

Equation 3 is a partial differential equation with
variable coefficients and is rather difficult to solve in
its general form, particularly, because we have no
knowledge regarding the variation of A and B with x.
We will use the method of separation of variables to
solve eq 3; however we, a priori, do not know if this
equation is separable. We assume that eq 3 possesses
a separable and a nonseparable solution, and we first
determine the separable part of the solution. We
propose

where N(x) is the separable portion of the solution, and
in what follows we will show that this corresponds to
the equilibrium solution. Substituting eq 7 into eq 3,

(9) Nowakowski, B.; Ruckenstein, E. J. Colloid Interface Sci. 1991,
145, 182.

(10) Parbhakar, K.; Jin, J. M.; Dao, L. H. J. Colloid Interface Sci.
1995, 174, 414.

(11) Parbhakar, K.; Lewandowski, J.; Dao, L. H. J. Colloid Interface
Sci. 1995, 174, 142.

Figure 5. Mean diameter versus total irradiation time at
10-6g. The vertical bars show the dispersion (2σ) for Gaussian
distributions.

dni/dt ) âi-1ni-1 - Rini - âini + Ri+1ni+1 ) Ii-1 - Ii
(1)

Ii ) âini - Ri+1ni+1 (2)

∂n(x,t)
∂t

) ∂

∂x[A(x) n(x,t) + ∂

∂x
(B(x) n(x,t))] ) - ∂

∂x
I(x,t)

(3)

A(x) ) R(x) - â(x) (4)

B(x) ) [R(x) + â(x)]/2 (5)

I ) - A(x) n(x,t) - ∂

∂x
[B(x) n(x,t)] (6)

n(x,t) ) N(x) Φ(x,t) (7)
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we get

Now if we assume

Equation 8 reduces to

Note that, physically, eq 9 corresponds to an equilibrium
solution (detailed balancing) which represents a closed
system (like ours); however, if we assume

we obtain a stationary state which represents an open
system where interaction among particles takes place.
Equation 10 is no longer valid, and in this case we
expect a family of solutions where equilibrium solution
is a particular case of the stationary solution with the
constant in eq 11 is zero. There are subtle differences
in the two cases which have been discussed at length
in ref 7. Here we are interested in the time dependent
solution for a closed system, i.e., the one that approaches
asymptotically to the equilibrium solution. From now
on we will restrict our attention to a closed system
where the asymptotic state is an equilibrium state and
use eq 9 to determine N(x). In general the coefficients
A and B depend on the cluster size because the fluxes
go down as the droplet grows due to the reduction in
the difference of chemical potential between the droplet
interiors and exteriors thereby lowering the effective
diffusion transport. In this study we make a simplifying
assumption that A/B is a slowly varying function of x
(this is a reasonable assumption, as the validity of
Fokker-Planck equation requires small increments for
all x). The above assumption is made with the possibil-
ity of achieving an analytical solution and with the hope
that a good agreement between theory and experiment
could eventually justify this assumption. Now eq 9 can
be solved for N, giving

where we have introduced the critical population xc
(corresponding to the population of droplet of critical
radius) as the lower limit. This is justified because the
droplets with radius smaller than the critical radius
disappear due to Ostwald ripening.11 We now proceed
to solve the nonseparable part of the solution and
assume

where x0(t) represent the average population of the

particles in a droplet or cluster. By writing Φ(x,t) in
this form, we are able to study the distribution about
the mean value. Since the experiments indicate that
the average value is a function of time, an explicit
dependence on time is an obvious choice. Substituting
eq 13 into eq 10, we get

In what follows, we will assume that both A and B are
constants and define

Equation 14 reduces to a diffusion equation, which is

where B ) (R + â)/2 and is not a diffusion coefficient
normally used in the literature. Because of the nondi-
mensional nature of our variable x, B has the dimen-
sions of s-1 instead of cm2 s-1. Later, when we compare
theory with experiments, we will define and estimate
as well the spatial diffusion coefficient in terms of â.
Equation 15 can serve to determine the average popula-
tion and can be easily solved to give

where we have assumed that the population of droplet
at t ) 0 is xc, the population corresponding to the critical
radius droplet. This is consistent with the above
assumption that droplets with x < xc will disappear. We
note from eq 17 that for A > 0, the droplets will simply
disappear and A < 0 corresponds to the growth phase.
For A ) 0 (R ) â), the average population remains
stationary at x ) xc. Equation 16 can be solved by
standard techniques, and the solution is given by

To proceed further, we need initial conditions on the
function f which is a mathematical function lacking
physical meaning. However the function f is related to
the cluster distribution n. From eq 7 and eq 13 and
assuming that at t ) 0 we have a δ function distribution
for n, we can write

Replacing x by x - xc, we have

Substituting eq 20 into eq 18, we get

Substituting eqs 13 and 21 into eq 7, we have

N(x)
∂Φ(x,t)
∂t

) B(x) N(x)
∂
2Φ(x,t)

∂x2
+

2
∂Φ(x,t)
∂x

∂

∂x
[B(x) N(x)] + A(x) N(x)

∂Φ(x,t)
∂x

+

Φ(x,t) ∂
∂x[A(x) N(x) + ∂

∂x
(B(x) N(x))] (8)

A(x) N(x) + ∂

∂x
[B(x) N(x)] ) 0 (9)

∂Φ(x,t)
∂t

) B(x)
∂
2Φ(x,t)

∂x2
- A(x)

∂Φ(x,t)
∂x

(10)

A(x) N(x) + ∂

∂x
[B(x) N(x)] ) const (11)

N(x) ) neq(xc) exp[-(A/B)(x - xc)] (12)

Φ(x,t) ) f(x + x0(t),t) (13)

∂f
∂t

) B∂
2f
∂x2

- A∂f
∂x

-
∂x0
∂t

∂f
∂x

(14)

∂x0/∂t ) -A (15)

∂f
∂t

) B∂
2f
∂x2

(16)

x0(t) ) xc - At (17)

f(x,t) ) ∫-∞

∞
f(ê,t)|t)0 1

x4πBt
exp[-

(x - ê)2

4Bt ] dê (18)

n(x,0) ) neq(x) f(x + xc,0) ) neq(x) δ(x - xc) (19)

f(x,0) ) δ(x - 2xc) (20)

f(x,t) ) 1
x4πBt

exp[-
(x - 2xc)

2

4Bt ] (21)

n(x,t) )
neq(xc)

x4πBt
exp[-

(x - x0)
2

4Bt ] (22)
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This shows that the size distribution of droplets or
clusters formed under microgravity environment can be
represented by a Gaussian with the mean and standard
deviation given, respectively, by x0(t) and x2Bt. Note
that the parameters used in theory (population) and
experiment (diameter) are not the same; a transforma-
tion is needed before we can make a direct comparison
between the two.
Experiments show that the droplet distribution for

specimens prepared under microgravity environment is
more or less Gaussian. This is true even if the PDLC
film is exposed to microgravity environment in the final
stages of the growth phase. In other words microgravity
or lack of gravitational forces can groom the droplet
distribution so that the data fit a normal curve. Theo-
retically we have shown that when cluster-cluster
aggregation, caused by gravitational forces, is neglected,
the population distribution is Gaussian at all times with
a time-dependent mean as also observed experimentally.
Since the experimental data are given in terms of
droplet diameter, we assume that

where k has the dimension of length and is probably a
function of time. Exact dynamical scaling is difficult
to find from our experimental data because of the
limitations imposed by the fixed drop time and combined
growth under microgravity and terrestial environment.
However, to recover the classical results12,13 (t1/3 depen-
dence) where coarsening takes place via condensation
and evaporation, kmust be a decreasing function of time
with t-2/3 dependence. In fact, from eq 17 during the
later stages of the growth phase (â > R, d0 > dc), we
have

which shows that k ∼ t-2/3 if we expect the classical
result to be valid. As mentioned earlier the experimen-
tally observed growth for mean droplet diameter is
much faster than the t1/3 scaling, which we believe is
due to coalescence processes. Substituting eq 23 into
eq 22, we get

where d0 is the mean droplet diameter and we have
defined

We now define an effective (because of combined
growth) spatial diffusion coefficient by

The plot of eq 25 is superimposed on the experimental
data in Figure 4, which shows a reasonably good
agreement for an estimated D ) 3.78 × 10-12 cm2 s-1.

While comparing Figures 3 and 4, we note that even if
the droplets were permitted to grow initially under
terrestrial conditions (4 s in this case) microgravity has
a kind of grooming effect which produces more or less
Gaussian distribution. One can easily argue that when
coalescence of droplets is neglected, the growth is
expected to be diffusion dominated. The aim here is not
to show that the droplet growth is diffusional but
develop a model which when combined with experimen-
tal results renders approximate estimate of the trans-
port coefficient D.

Conclusions

In conclusion we note that a microgravity environ-
ment not only produces more spherical droplets but also
modifies the droplet distribution. We find that for
combined growth, where initial growth is under ter-
restrial conditions and the final growth is under micro-
gravity environment, the distribution is almost Gauss-
ian as compared to the situation where the total growth
takes place at 1g. The coalescence processes at 1g play
an important role and produce non-Gaussian type of
distribution. The important observation is that micro-
gravity grooms the droplets in such a way that the
distribution becomes Gaussian even if the microgravity
exposure is in the final growth stage. The mean radius
increases with time much faster than predicted by
theory. We believe that this difference is due to
coalescence processes during the cure time at 1g. The
growth at 10-6g is diffusion dominated with an esti-
mated effective spatial diffusion coefficient of 3.78 ×
10-12 cm2 s-1 which seems reasonable for a polymer
matrix environment. We find reasonable good agree-
ment between theory and experiment.
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Appendix

The system of eq 1 when written explicitly for i ) 1,
2, ..., p, are

Note that R1 ) â0 ) Rp+1 ) âp ) 0 by definition. Adding
the above system, most of the terms cancel out and we

(12) Landau, L. D.; Lifshitz, E. M. Physical Kinetics, Pergamon
Press: New York, 1981; Chapter XII.

(13) Lifshitz, E. M.; Slyozov, V. V. J. Phys. Chem. Solids 1961, 19,
35.

d ) kx (23)

d0(t) ) -kAt ) kât (24)

n(d,t) )
kneq(dc)

x2πσ
exp[-

(d - d0)
2

2σ2 ] (25)

σ2 ) 2k2Bt (26)

D ) k2B (27)

dn1/dt ) -â1n1 + R2n2 (A1)

dn2/dt ) -(R2 + â2)n2 + R3n3 + â1n1 (A2)

dnp-1

dt
)

-(Rp-1 + âp-1)np-1 + Rpnp + âp-2np-2 (Ap-1)

dnp/dt ) -Rpnp + âp-1np-1 (Ap)
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are left with

Substituting eq Ap+1 into eq A1, we get

Equation Ap+2 can be generalized to

Now if we replace the discrete variable k by a continuous
variable x, the sum over j is transformed into an integral
with a lower limit xmin ) x + 1/2 and an upper limit xmax
) p + 1/2. Each term in the sum is replaced by an area
of a rectangle of unit width and the sum of the areas of
the rectangles equals the area under the continuous

curve which is the integral of n(x). Thus eq Ap+3 can
be written as

Differentiate eq Ap+4 with respect to x, we get

Change x + 1/2 f x in eq Ap+5, we get

Using Taylor’s series expansion and assuming R(x+1/2)
= R(x), we get the Fokker-Planck equation.

CM950493K

â(x) n(x,t) ) R(x + 1)n(x + 1,t) +
d
dt∫x+1/2

xmaxn(x,t) dx′ (p+4)

d
dt
n(x + 1/2,t) ) ∂

∂x
(R(x + 1)n(x + 1, t) -

â(x)n(x,t)) (Ap+5)

d
dt
n(x,t) ) ∂

∂x
[R(x + 1/2)n(x + 1/2,t) -

â(x - 1/2)n(x - 1/2,t)] (Ap+6)

dn1

dt
+ ∑

j)2

p dnj

dt
) 0 (Ap+1)

â1n1 ) R2n2 + ∑
j)2

p dnj

dt
(Ap+2)

âknk ) Rk+1 nk+1 +
d

dt
( ∑
j)k+1

p

nj) (Ap+3)
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